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Abstract—The wide use of network computing technologies
has promoted the popularity of outsourced storage services.
Meanwhile, the provable data possession (PDP) techniques are
widely studied as the outsourcing storage servers are not always
trustworthy and dependable in maintaining the outsourced data.
However, most existing PDP solutions are either costly for
the current Internet of things (IoT) devices, or vulnerable to
spoofing attacks. In this paper, we propose a succinct anti-
spoofing provable data possession scheme for lightweight clients
in network computing. We employ the basic integrity comparison-
based verification to fit for the resource-constrained verifiers, and
propose a random sentinel metadata setup mechanism and the
true-fake blended challenge scheme to improve the robustness
against spoofing attacks of untrusted servers. The analyses reveal
that our approach is effective in data possession verification with
the robustness against spoofing attacks, while the overhead on
the verifier side is low.
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able Data Possession, Anti-spoofing, Lightweight Client

I. INTRODUCTION

In the era of network computing, new computing tech-
nologies such as cloud computing [1], transparent computing
[2], [3] and edge computing [4], [5] provide terminal devices
with all-embracing services via the network. In this context,
storage-outsourcing services which enable terminals to store
huge amount of data in remote storage servers for reducing
the burden of local data maintenance are generally adopted
and extensively used in practice [6].

However, there are also some disadvantages to the storage-
outsourcing pattern. The outsourcing storage systems are not
always trusted enough to keep the outsourced data while the
clients no longer physically possess their data. These storage
providers may lose data accidentally due to hardware failures,
or even worse, delete the rarely used data deliberately for their
own interests.

For mitigating this problem, the provable data possession
(PDP) techniques which allow clients to verify whether their
data are still stored in untrusted outsourcing servers has been
widely studied academically and industrially [7]. Since the
simple integrity-based outsourcing data verification technique
has been proposed by Deswarte et al. [8] in the early days,
numerous improvements have been made progressively in
terms of attack resistance [9], [10], dynamic modification
[11], [12], multi-copy support [13], public verifiability [14],

retrievability [15], [16], etc. Unfortunately, existing solutions
cannot resolve the problem entirely in current practical scenar-
ios. With the flourish of the Internet of things (IoT) industry
[17], numerous resource-constrained IoT devices generate and
outsource massive amounts of data to remote storage servers
continuously. For instance, wearable smart-bands are keeping
producing and updating the activity data of the owners to
remote storage servers every day. Consequently, for one thing,
the high cryptographic computational overheads of the verifi-
cation procedures of most PDP solutions are not affordable
to all the resource-limited IoT devices. For another, few
lightweight approaches are resistant to the spoofing attacks
from untrusted servers, especially with the enhancements of
statistic analysis abilities of the adversaries to infer and reserve
the corresponding verification metadata with the aid of current
big data and deep learning techniques [18].

In this paper, we propose a succinct anti-spoofing provable
data possession scheme for lightweight clients in network
computing from a novel perspective. We employ the typical
challenge/response verification model and adopt the succinct
verification method in which the verifier simply compares the
reply hash checksums of data blocks with the pre-reversed
sentinel ones, to minimize the overhead on the resource-
constrained verifier side. Furthermore, to make the efficient
approach robust to spoofing attacks from untrusted servers, we
not only pre-reverse hash checksums of sequential data blocks
with fixed size and random adjacent overlaps as unpredictable
sentinel metadata to protect against guessing attacks, but
also conceal every true verification intent (associated with
really possessed sentinel metadata) with a sufficient amount
of indistinguishable spurious ones during the verification to
defend against statistical replay attacks. Finally, we discuss
our approach in terms of security and performance, which
shows that it is effective in data possession verification with
the robustness against spoofing attacks and low overhead on
the verifier side.

In summary, our major contributions are listed as follows:
1. We pre-reverse the position indices and hash checksums

of selected sentinel data blocks which overlap each other
randomly and cover the whole outsourcing data as the sentinel
metadata for the challenge, to prevent the untrusted servers
from guessing these sentinel blocks associated with the sen-



tinel metadata possessed by the verifier.
2. We obscure the true verification intent involving sentinel

metadata with the sufficient and statistically indistinguishable
fake ones to defend against spoofing attacks as the untrusted
servers can neither recognize the true sentinel data blocks
even through statistical analyses nor be benefited from keeping
every possible sentinel metadata instead of real data to respond
all possible challenges.

3. We prove the security of our approach against spoofing
attacks from untrusted servers and theoretically analyze the
performance of our proposed approach.

The remainder of this paper is organized as follows. Section
II summarizes the related work. Section III describes the
threat model. In Section IV, we propose a novel succinct
PDP scheme suitable for lightweight clients. And then, in
Section V, we analyze the effectiveness and performance of
our approach. Finally, in the last section, we conclude our
work and propose the possible improvements in the future.

II. RELATED WORK

Since the outsourcing data services are susceptible to acci-
dental or malicious data corruption, the PDP techniques, which
enable the clients to verify their outsourcing data stored in
untrusted remote servers based on data integrity, have naturally
become the research hotspot.

Deswarte et al. [8] designed and implemented a basic and
crude solution for outsourcing data verification in the early
days. In their approach, the verifier just pre-computes and
stores several excepted hash checksums of the data concate-
nated with auxiliary secret numbers before data outsourcing,
so that the verifier can challenge the server with the secret
numbers and then compares the responses with the pre-
computed ones for data possession verification. However, such
a simple PDP solution is vulnerable to spoofing attacks as the
verification metadata (i.e., secret numbers and corresponding
hash values) possessed by the verifier are effective only in one-
time because a malicious server can keep the hash values after
challenges for further use without maintaining corresponding
data.

Ateniese et al. [9] formalized a typical static PDP model
(S-PDP). They exploited the homomorphic hash technique to
implement the repeatable integrity verification for outsourcing
data and employed a probabilistic data verification with the
help of the random sampling technique to cut down the
communication cost. Their results showed that the approach
was able to detect the imperceptible server misbehavior (1%
data corruption) with high probability (≥ 99%) through only
4.6% data verification.

In order to support the dynamic data modification, Ateniese
et al. [11] further proposed a scalable PDP scheme (ScPDP)
with finite-repeatable data appending capability. However, this
approach has shortcomings in effectiveness as it only enables a
finite number of valid verification and is somewhat vulnerable
to guessing attacks. Erway et al. [12] proposed a series
of dynamic PDP (DPDP) models relying on the rank-based
skip list, which supports multiple updating operations on the

provable data. But in these schemes, the computing overhead
on the client sides still need to be reckoned substantially.

Barsoum et al. [13] proposed a new PDP technique which
enables slight modifications on multiple data copies so as to
support the multi-copy storage scenarios. To a certain extent,
this solution is also capable to mitigate prediction attacks.
However, such a technique brings about non-negligible over-
head on the client sides, which is unacceptable for resource-
constrained verifiers.

Vijaya Kmari et al. [14] introduced a PDP approach which
enables probabilistic proofs of possession by sampling random
sets of data blocks from the server in order to reduce I/O
costs. A trusted third party (TTP) is also introduced to share
the computing overhead on clients. Unfortunately, the TTP is
not always available in many practical environments.

Besides, by adding redundant recovery information into the
metadata possessed by the verifier, the proof of retrievability
(POR) scheme is implemented on the basis of data integrity
verification [15], [16], which additionally enables data re-
covery when the verification results turn out to be negative.
However, the POR technique is severely hindered by its limited
number of valid verification and recovery, as well as the
significant overhead.

When it comes to lightweight clients, e.g., the massive IoT
devices, the cryptographic computational overheads of most
existing solutions are unaffordable to many verifier devices
due to the resource limitations, while few lightweight schemes
are resistant to the spoofing attacks, especially considering the
improvements of adversaries by leveraging current big data
and artificial intelligence techniques. Therefore, an efficient
and secure PDP approach is still needed by lightweight clients
in practical network computing environments.

III. THREAT MODEL

We assume that the untrusted server may spoof clients
by maintaining the small-size metadata instead of the large
original data for its own interests (e.g., saving storage costs
or attempting to conceal the facts of data loss). It is able to
record all the challenge information for analyses in order to
generate the right responses for cheating the verifier during
the verification. However, the adversary cannot defeat current
cryptographic technique like standard hash function directly.

IV. APPROACH

In this section, we first describe the general idea of our
approach and then detail it in terms of the setup phase and
verification phase respectively.

A. Overview

U nlike most existing PDP solutions relying heavily on
high-cost cryptographic computation on both client and server
sides for verification, our approach achieves this goal from the
obfuscating point of view to satisfy the lightweight verification
clients. Our main idea is that, before outsourcing the data to an
untrusted storage server, the verifier simply pre-computes and
stores several hash checksums of sentinel data blocks which



overlap each other randomly and cover the whole data, as the
expected responses of challenges.

When verification is required, the verifier challenges the
storage server with only a set of block-position indices consist-
ing of a true one (i.e., the one associated with existing sentinel
metadata) accompanied by several obfuscating fake ones (no
sentinel metadata is pre-reserved) for security purpose. For the
response, storage server should compute corresponding hash
checksums of all these specified data blocks according to the
position indices and then reply them to the verifier. And the
verifier just ignores the invalid replies and simply compares
the true one with the pre-reversed sentinel one for proof, which
is extremely efficient for the verifier in term of computation
of verification.

B. Setup phase

In the setup phase, as for the data D which is going to be
outsourced, the verifier will generate and store a set of sentinel
metadata in advance for future challenge and verification.

A piece of sentinel metadata is a pair of index and hash
checksum of corresponding fixed-size sentinel data block
belonging to the data D. Here, the block position is used as
the block index, e.g., the pos is the index of the data block
B[pos][pos+ bs], where bs denotes the block size1.

The verifier starts at a random position of D (using the step
size ss as the skip granularity, where ss ∈ [1 bit, hs] and
hs denotes the size of hash checksum2 of a data block) and
selects sentinel data blocks sequentially. The adjacent blocks
will overlap each other by random steps, so as to make the
position indices of these true sentinel metadata uncorrelated
and unpredictable, thereby further preventing the untrusted
servers from guessing these data blocks for preparing related
checksums (see details in Section V). Besides, to ensure the
verifiability of the entire data, the verifier keeps selecting
data blocks in sequence for hash operations until covering the
whole data. Note that as for the last block of D, it will be
fulfilled by the bits from the start of D if there are not enough
bits left in the end.

As for each selected data block, the verifier simply applies
the hash function to produce the corresponding hash check-
sum, which is the expected response from the server during
the verification, i.e., Mpos = Hash(B[pos][pos + bs]) is the
right answer of the challenged block index pos. Consequently,
the storage cost of sentinel metadata is limited due to the small
size of the hash output. The details are given in Algorithm 1.

Additionally, the verifier divides the entire data D into sev-
eral partitions with the partition size of no less than (d bshse×ss)
and keeps the auxiliary partition information. Therefore, each
partition is able to accommodate no less than d bshse block
indices theoretically and each selected block position index
falls within a certain partition.

1In practice, the block size is usually set as several Mb with the upper
bound of D.size− 1.

2Practically, the standard hash functions such as SHA-1 (128 bits output),
SHA-256 (256 bits output), SHA-512 (512 bits output), etc., are commonly
used.

Algorithm 1 Sentinel metadata generating algorithm
Input: the data D, the block size bs and the step size ss
Output: the sentinel metadata smd

Select a random position pos as the start position
while data is not totally covered do

pos← pos+ ((Random(i)× ss) mod bs)
#Picking up a sentinel data block and calculating its hash
checksum
if (pos+ bs) ≤ D.size then

M ← Hash(B[pos][pos+ bs])
else

M ← Hash(B[pos][D.size] + B[0][pos+ bs−D.size])

end if
smd.push(< pos;M >)

end while
return smd

Finally, the data D, as well as the block size bs, will be
outsourced to the remote storage server.

C. Verification Phase

In order to verify the possession of a sentinel data block
B[i][i+ bs] stored on the remote storage server, the verifier
challenges the server with the position index of the certain
partition within which the corresponding sentinel block index
posi (i.e., the one associated with the really possessed sentinel
metadata pair < posi;Mi >) as well as other d bshse − 1
indistinguishable fake ones fall3 (step 1 in Fig. 1), instead
of submitting the single block index of B[i][i+ bs], so as to
prevent the untrusted server from recognizing the true sentinel
data blocks directly or with the help of statistical analyses, or
being benefited from keeping every possible hash checksums
instead of original data for successfully responding all possible
challenges (see details in Section V).

When received the challenge from the verifier, the server
would figure out the true-fake blended block indices included
in the certain partition based on the position index of the
partition together with the step size, and then computes the
corresponding hash checksums of all the specified data blocks
according to these indices equally (step 2 in Fig. 1), e.g.,
M ′a = Hash(B[a][a+bs]), . . . ,M ′m = Hash(B[m][m+bs]),
and replies the set of < pos∗;M

′
pos∗ > pairs to the verifier

(step 3 in Fig. 1).
As for the checksums returned by the server, the verifier

just ignores the ones associated with the fake block indices
and only checks whether the one related to the true index is
equal to that in the stored sentinel metadata (step 4 in Fig.
1). If the check succeeds, the verifier believes that the storage
server is still possessing that data block4.

Apparently, our scheme incurs truly minimal overhead on
the client side during the verification phase as no high-cost

3Although there may exist other true block indices in the certain partition,
these true ones are treated as the fake ones as well in a certain verification.

4According to the strand PDP [9], the verifier is able to discover the server
misbehaviors with a high probability through the successful verifications of
only a small portion of all the data blocks.
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cryptographic operations are needed in order to check the
reply from the server. Moreover, it is also obvious that our
scheme allows unlimited verifications and is publicly verifiable
if outsourcing the sentinel metadata to any third party.

V. DISCUSSION

In this section, we discuss the security, effectiveness and
performance of our approach.

A. Security & Effectiveness

Being different from most PDP solutions which rely on
cryptographic mechanisms to ensure the security, our approach
leverages the obfuscating method instead to achieve the secu-
rity verification.

Although we employ no additional cryptographic protection
mechanism such as challenge nonce for defending the vul-
nerable sentinel metadata, we conceal the true sentinel block
index with at least d bshse − 1 indistinguishable fake ones from
the same partition. Therefore, it is still almost impossible for
the untrusted server to pick out the right index of the sentinel
data block from a large amount of the confusing fake ones in
a verification.

Specifically, the success rate of guessing attack for the
malicious server during a verification is less than 1

d bs
hs e

. Since
bs is usually millions of times larger than hs, this rate
approaches to 0 in practice.

As the size of a hash checksum is much smaller than that of
a data block, there is no doubt that the untrusted server has the
cheating motivation when it is capable of providing a forged
possession proof of a certain sentinel block by maintaining all
the hash checksums (a true one is definitely included) of that
certain block verification with low storage cost.

Fortunately, in our approach, a true block index is mixed
with at least d bshse − 1 indistinguishable fake ones in each
verification. Hence, it remains unprofitable for the malicious
server as it has to store no less than d bshse hash checksums (the
total size is no less than (d bshse × hs) and is no less than that
of an original block) to forge the possession proof of a certain
sentinel block. Therefore, the storage server has no reason to
cheat because the cheating cost is as higher as that of being
honest.

Furthermore, as the malicious server might try to distin-
guish the sentinel blocks from the fake ones according to
the statistical frequency analyses of the block indices, to
address this potential threat, whenever a certain sentinel block
is going to be verified, the server will also be required to
indiscriminately provide the possession proofs of all the other
possible blocks associated with the other obfuscating indices
falling within the same partition at the same time, which
ensure that the querying frequency of the obfuscating fake
indices are basically indistinguishable from that of the true
ones statistically.

Besides, since we select the sentinel data blocks with
random adjacent overlaps, there is neither predictable pattern
in how those sentinel data blocks are distributed in the
entire outsourcing data D, nor clear correlations among the
sentinel data blocks, in other words, the server will never
have additional advantages for recognizing more sentinel data
blocks even if one sentinel block is disclosed.

Additionally, according to the security analyses above, it is
obvious that there exist no consumptive factors which limit
the number of verifications, therefore, our scheme is capable
of supporting infinite secure verifications.

B. Performance

As we mentioned above, the high computational overhead
in most existing PDP schemes is disadvantageous to the PDP
implementation for the lightweight clients such as IoT devices
in the network computing environment. By replacing the cryp-
tographic computation involved in most PDP schemes with
the confusion process, our approach achieves the unlimited
repeatable verification with light computing overhead on the
client side. Being different from the DPDP and some other
existing methods, our clients only need to check whether the
checksum returned by the server is equal to the pre-stored one,
while in most PDP schemes (such as DPDP [12] and SPDP
[11]) the decryption calculation is needed. Without decryption
or other complex calculations, the computing overhead on the
client side would be extremely low in our approach. When it
comes to the server side, a server needs to compute the hash
checksum of the sentinel block as well as the fake ones. For
each really possessed sentinel block index, the server will have
to compute at least (d bshse × ss) hash checksums. That leads
to an additional computing overhead on the server.

As for storage overhead, the client needs to record around
dD.size

bs e sentinel block indices, along with the corresponding
hash checksums and the auxiliary partition information (which
can be considered as a small constant). Therefore, the storage



TABLE I
PERFORMANCE COMPARISON

Performance Indicator \ Scheme RIC [8] POR [15] S-PDP [9] ScPDP [11] DPDP [12] Our Approach
Repeatable verification no Limited yes yes yes yes
Computing overhead (Client side) low medium medium medium medium low
Storage overhead (Client side) low low low low low low
Communication overhead (Client side) medium medium low low medium low
Computing overhead (Server side) medium medium medium medium medium high
Storing overhead (Server side) low high low low high low
Communication overhead (Server side) medium medium low low medium high

space required for the client is approximately dD.size
bs e × hs.

As the block size bs is usually larger than the size of the hash
value hs significantly, the storage overhead on the client side
is low. In addition, the server does not need to keep any extra
information except the stored data, i.e., the storage overhead
is very small from the entire perspective.

When considering the communication overhead, for each
request initiated, the only information that the client needs
to send is the partition index, therefore the transmission
overhead on the client side is very small, nearly the same
as most schemes which require sending indices. Similar to the
computing cost, in our approach, the communication overhead
on the server side will be slightly higher than most PDP
schemes, because the server not only needs to read a lot of
data to calculate the hash checksums, but also has to transmit
many fake requests. But on the whole, considering the fact
that the hash output has a reasonable size, and the client can
simply ignore the hash checksums of fake block indices, the
increase of communication overhead is acceptable.

Consequently, our scheme incurs lower overhead on the
client side when compared with other schemes. More detailed
comparisons are shown in Table 1.

VI. CONCLUSION

In this paper, we propose a provable data possession scheme
for lightweight clients in network computing with the spoof-
ing resistant feature. We simply adopt the general integrity
comparison-based verification that incurs very little overhead
of the resource-limited verifiers. Meanwhile, for mitigating the
security vulnerabilities associated with the simple verification
method, we not only propose a random sentinel metadata setup
mechanism but also the true-fake blended challenge scheme
to make the approach more robust to spoofing attacks. The
analyses show that our approach is effective in verifying the
possession of own data stored in untrusted servers and is robust
against spoofing attacks, while the overhead on the verifier side
is low.

As for the further enhancements, we would like to adopt the
variable-size block pattern in the sentinel metadata setup pro-
cedure so as to further improve the diversity and randomness
of metadata possessed by the verifiers. Furthermore, we plan
to implement and experimentally evaluate our approach on our
medical big data system consisting of a big data platform and
multitudinous health monitoring IoT devices.
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